High-efficiency transformation of Rhizobium leguminosarum by electroporation.

نویسندگان

  • B Garg
  • R C Dogra
  • P K Sharma
چکیده

Electrotransformation of Rhizobium leguminosarum was successfully carried out with a 15.1-kb plasmid, pMP154 (Cmr), containing a nodABC-lacZ fusion by electroporation. The maximum transformation efficiency, 10(8) transformants/microg of DNA, was achieved at a field strength of 14 kV/cm with a pulse of 7.3 ms (186 Omega). The number of transformants was found to increase with increasing cell density, with no sign of saturation. In relation to DNA dosage, the maximum transformation efficiency (5.8 x 10(8) transformants/microg of DNA) was obtained with 0.5 microg of DNA/ml of cell suspension, and a further increase in the DNA concentration resulted in a decline in transformation efficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic transformation of Rhizobium leguminosarum by plasmid DNA.

We demonstrated the genetic transformation of Rhizobium leguminosarum by R68.45 plasmid DNA by freezing and thawing cell suspensions in the presence of R68.45 plasmid DNA and 20 mM MgCl2. Clones resistant to kanamycin and tetracycline were recovered at a frequency of 10(-8) per recipient cell. No colonies that were doubly drug resistant were recovered in parallel control experiments.

متن کامل

Purification of Rhizobium leguminosarum HypB, a nickel-binding protein required for hydrogenase synthesis.

The products of the Rhizobium leguminosarum hyp gene cluster are necessary for synthesis of a functional uptake [NiFe] hydrogenase system in symbiosis with pea plants, and at least for HypB and HypF, a role in hydrogenase-specific nickel metabolism has been postulated (L. Rey, J. Murillo, Y. Hernando, E. Hidalgo, E. Cabrera, J. Imperial, and T. Ruiz-Argüeso, Mol. Microbiol. 8:471-481, 1993). Th...

متن کامل

Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants.

Ethylene inhibits nodulation in various legumes. In order to investigate strategies employed by Rhizobium to regulate nodulation, the 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene was isolated and characterized from one of the ACC deaminase-producing rhizobia, Rhizobium leguminosarum bv. viciae 128C53K. ACC deaminase degrades ACC, the immediate precursor of ethylene in higher plants. T...

متن کامل

Functional characterization of aroA from Rhizobium leguminosarum with significant glyphosate tolerance in transgenic Arabidopsis.

Glyphosate is the active component of the top-selling herbicide, the phytotoxicity of which is due to its inhibition of the shikimic acid pathway. 5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is a key enzyme in the shikimic acid pathway. Glyphosate tolerance in plants can be achieved by the expression of a glyphosate-insensitive aroA gene (EPSPS). In this study, we used a PCR-based two-s...

متن کامل

Genetics and biotechnology of the H(2)-uptake [NiFe] hydrogenase from Rhizobium leguminosarum bv. viciae, a legume endosymbiotic bacterium.

A limited number of strains belonging to several genera of Rhizobiaceae are capable of expressing a hydrogenase system that allows partial or full recycling of hydrogen evolved by nitrogenase, thus increasing the energy efficiency of the nitrogen fixation process. This review is focused on the genetics and biotechnology of the hydrogenase system from Rhizobium leguminosarum bv. viciae, a freque...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 65 6  شماره 

صفحات  -

تاریخ انتشار 1999